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1. Introduction

Progress in the subject of higher spin gauge fields has often been related with the construc-

tion of new equivalent formulations of the theory. A Lagrangian formulation at the free

level [1 – 4] required the introduction of a carefully selected set of auxiliary fields. Other

auxiliary fields were needed for the BRST reformulation, directly inspired by string field

theory (see e.g [5 – 13] and references therein), in terms of the field theory associated to a

BRST first quantized particle model [14 – 16] (see e.g. [17] for a review). This reformulation

explicitly revealed the relation with the tensionless limit of string theory and provided a

compact Lagrangian description at the free level. Similarly, finding a consistent interac-

tion [18, 19] on an anti-de Sitter (AdS) background was done exclusively in the unfolded

formulation [20, 21] that also provides a natural framework for various other problems of

higher spin theories [22 – 24].

Further developments, such as for example understanding whether the recently con-

structed interaction in an AdS background admits a Lagrangian formulation, require a

good control over various equivalent formulations differing by auxiliary and pure gauge

fields. As a first step, one would like to explicitly relate the unfolded formulation and the

BRST formulation. In the case of a flat background, this has been done recently through

the construction of a parent theory [25] from which both formulations can be reached

through consistent reductions. Furthermore, some algebraic structures that are hidden in

the BRST or unfolded formulations appear more transparently in the parent theory or

some of its intermediate reductions. The objective of the present paper is to extend these

results to an AdS background.

From a more technical point of view, understanding free higher spin gauge fields in

terms of a first-quantized generally covariant particle model has two advantages: firstly, it

allows one to transpose the arsenal of cohomological methods available at the BRST first

quantized level to the gauge field theory. In particular, because auxiliary fields and pure

gauge degrees of freedom can be identified with cohomologically trivial pairs at the first-

quantized level, showing the equivalence of various formulations boils down to a straight-

forward exercise in homological algebra. Secondly, well known quantization techniques for

complicated constrained systems in curved spaces can be used to construct, new, more

transparent descriptions of the gauge field theory.

In this paper, we combine a set of ideas available in the literature to construct the par-

ent theory of higher spin gauge fields on AdS: the use of an embedding space with vielbeins

and connections [26, 18, 27, 28] (see also [29] for a review) and a Fedosov-type approach

for constrained systems [30 – 34] in order to achieve a generally covariant description. The

resulting parent theory is completely natural from a geometrical point of view and admits

a transparent algebraic structure with the simplest possible numerical factors. We first

reduce to the BRST based “metric-like” description of higher spins on AdS [35 – 37] that

is directly related to Fronsdal’s original formulation by computing the cohomology of the

space-time part of the parent differential. Instead of the subalgebra of sp(4) that underlies

the parent theory in the embedding space, the algebraic structure of the BRST formulation

in intrinsic coordinates on AdS is that of an open algebra and much more involved.
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We then analyze the reduction to Vasiliev’s unfolded formulation [38, 26] by computing

the cohomology of the algebraic part of the BRST charge and show how the numerical

factors and projectors of the unfolded formulation of [38, 26] arise during this reduction.1

Along the way, we construct various new intermediate descriptions with less variables but

more complicated structure. Besides the absence of projectors and coefficients involving

counting operators the advantage of the parent formulation and some of its intermediate

reductions is that, at the price of introducing additional target space ghost variables,

the theory is described by a single BRST operator. This is in contrast to the unfolded

formulation [38, 26], where the higher spin theory is described by two differentials, one

in the sector of higher spin connections, the other in the sector of curvatures, along with

algebraic constraints relating these two sectors.

We hope that the parent theory or one of its intermediate reductions will be useful

for resolving the above-mentioned problem of compatibility between Lagrangian and in-

teraction. Because of the way the parent theory is obtained from the theory of higher

spin gauge fields in flat space (in one dimension more and with 2 additional constraints),

we also expect that problems such as the classification of all global symmetries or the

AdS/CFT correspondence in this context might be more tractable. Finally, because the

BRST formulation provides a unified framework for both higher spin gauge fields and string

(field) theory, it might be worthwhile to explore to what extent successful techniques can

be transfered from one subject to the other.

The paper is organized as follows: in the next section, we briefly recall how to associate

a gauge field theory to a BRST first-quantized system. We also discuss some reduction

techniques on the first quantized level and the relation with generalized auxiliary fields.

Finally, we comment on the existence of Lagrangians associated with BRST field theories.

In section 3, we give the details on the embedding and the covariantization procedure by

constructing the parent theory for a scalar particle on AdS. We also discuss its reductions

to standard and unfolded form. The inclusion of additional internal degrees of freedom

to get our main result, the parent theory for higher spin gauge fields on AdS, is then

straightforward and done in section 4. The explicit reductions are more involved. We

summarize the main steps in the rest of section 4. Mathematical and technical details on

reductions are relegated to the appendix.

2. Gauge field theories associated to first-quantized systems

2.1 BRST differential and equations of motion

Let us briefly recall some basic facts about free field theories associated to BRST first-

quantized systems with vanishing Hamiltonian. More detailed expositions can be found for

instance in [39, 40] and in [25], which we follow here.

Suppose we are given with a quantum BRST system whose space of states is the space

of sections Γ(H) of a vector bundle H over a space-time manifold X. Locally, the space

1Note that the unfolded formulation can also be directly reduced to Fronsdal’s original formulation, see

e.g. [29].
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of states can be identified with functions on X taking values in the graded superspace H.

The degree is identified with the ghost number and denoted by gh(·). The BRST operator

Ω : Γ(H) → Γ(H), gh(Ω) = 1 is assumed to be a Grassmann odd differential operator of

finite order. Locally, it is a differential operator with coefficients in linear operators on

H. In what follows such a BRST system is referred to as a BRST first-quantized system

(Ω,Γ(H)).

A local gauge field theory is associated to (Ω,Γ(H)) in the following way. If eA is a real

frame of the bundle H, a generic section is given by φ = φA(x)eA. One then introduces an

independent field ψA(x) for each component, with Grassmann parity and the ghost number

prescribed by |ψA| = |eA| and gh(ψA) = −gh(eA). All component fields are combined into

a single string field

Ψ = eA ⊗ ψA , (2.1)

understood (locally) as an element of the tensor product of H and the algebra of local

functions, i.e., functions in ψA and their space-time derivatives, see [25] for details. The

field theory associated with the first-quantized system (Ω,Γ(H)) is determined by the

BRST differential sΨ = ΩΨ or, in terms of components, sψA = Ω
A
BψB . Differential s is

extended to arbitrary local functions by requiring that s satisfies the Leibnitz rule and

commutes with the total derivative

∂µ =
∂

∂xµ
+ ψA

,µ

∂

∂ψA
+ ψA

,µν

∂

∂ψA
,ν

+ · · · . (2.2)

In particular, the equations of motion have the form sΨ(−1) = 0 ⇔ ΩΨ(0) = 0 while the

gauge transformations are identified with δΨ(0) = ΩΨ(1) where ghost-number-one fields in

Ψ(1) are replaced with gauge parameters. Here and in what follows we use the decom-

position Ψ =
∑

n Ψ(n) of a string field into components Ψ(n) containing fields at ghost

number n.

2.2 Reductions

Consider a not necessarily linear nor Lagrangian BRST gauge field theory described by a

differential s, understood as a vector field on the space of fields ψA and their derivatives.

The differential s is assumed to be local, i.e., sψA involve derivatives of finite order, and to

be commuting with the total derivative ∂µ. Even in this more general non linear context,

it is still useful to combine all the fields into a string field Ψ. The equations of motion

for the physical fields are then given by sΨ(−1)
∣∣
Ψk=0, k 6=0

= 0 while the gauge symmetries

are determined by δΨ(0) = sΨ(0)|Ψ(k)=0, k 6=0,1 with ghost-number-1 component fields of Ψ(1)

replaced by gauge parameters.

Suppose that, after an invertible change of coordinates involving derivatives if nec-

essary, the set of fields ψA splits into ϕα, wa, va such that equations swa|wa=0 = 0 (un-

derstood as algebraic equations in the space of fields and their derivatives) are equivalent

to va = V a[ϕα], i.e., can be algebraically solved for fields va. One then says that fields

w, v are generalized auxiliary fields. The field theory described by s is then equivalent

to that described by the reduced differential s̃ acting on the space of fields ϕα and their
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derivatives and defined by s̃ϕα = sϕα|wa=0, va=V a[ϕ] (see [25] for more details). In the

Lagrangian framework, fields w, v are in addition required to be second-class constraints in

the antibracket sense. In this context, generalized auxiliary fields were originally proposed

in [41]. Note that generalized auxiliary fields comprise both standard auxiliary fields and

pure gauge degrees of freedom, together with associated ghost and antifields.

In the case where the gauge field theory is a linear theory associated with a BRST

first-quantized system (Ω,Γ(H)), one can proceed with the reductions at the first-quantized

level. To identify a first-quantized counterpart of elimination of generalized auxiliary fields,

we need to recall the notion of consistent reduction of a first-quantized gauge system dis-

cussed in [25]. In order to do so, we use the concept of algebraic invertibility: a differential

operator O : Γ(H) → Γ(H) is algebraically invertible iff it is invertible in the space of dif-

ferential operators of (graded) finite order. In terms of a local frame a differential operator

has the form O = OA
B(x, ∂

∂x
) so that Oφ = O(eAφA) = eBOB

AφA for φ ∈ Γ(H). Note

that the derivative-independent part of an algebraically invertible operator is an invertible

matrix.

Proposition 2.1. Let H decompose into a direct sum of vector bundles H = E ⊕ G ⊕ F

and the component
GF

Ω = PGΩPF, with PG,PF denoting the projector to Γ(G), resp. Γ(F),

be algebraically invertible as an operator from Γ(F) to Γ(G). Then the system (Ω,Γ(H))

can be consistently reduced to (Ω̃,Γ(E)) with

Ω̃ = (
EE

Ω −
EF

Ω (
GF

Ω )−1
GE

Ω ) Ω̃ : Γ(E) → Γ(E) . (2.3)

In this case, the gauge field theories associated with (Ω,Γ(H)) and (Ω̃,Γ(E)) are related by

elimination of generalized auxiliary fields.

In appendix A we recall a useful proposition which allows one to systematically study

various consistent reductions and discuss the relation with the so-called D-module approach

to linear partial differential equations.

To conclude this discussion of consistent reductions in first quantized terms, let us

note that this procedure controls the problem of identifying generalized auxiliary fields in

the non linear case as well. Indeed, suppose that the non linear theory corresponds to a

consistent deformation of a linear theory associated to (Ω,Γ(H)), i.e., the non linear BRST

differential has the form

s = s0 + gs1 + g2s2 + · · · , s2 = 0 (2.4)

with s0Ψ = ΩΨ the free BRST differential and g a coupling constant understood as formal

deformation parameter. Now, if the fields of the theory split into wa, va, ϕα so that s0w
a = 0

can be algebraically solved as va = V a
0 [ϕ] at wa = 0, i.e., if w, v are generalized auxiliary

fields of the free theory, it is then easy to see that they are also generalized auxiliary fields

for the deformed theory. Namely, at w = 0 equations swa = 0 can be algebraically solved as

va = V a
0 [ϕ] + gV a

1 [ϕ] + · · · , (2.5)
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order by order in g. Note however that in this setting all quantities, such as the reduced

BRST differential for instance, are formal power series in the deformation parameter g. In

particular, even if s is polynomial, the reduced differential s̃ can be an infinite series whose

convergence is a separate question.

2.3 Lagrangians

Whenever there exists an inner product that makes the BRST operator Ω hermitian, the

action that gives rise to the equations of motion is

Sph[Ψ(0)] = −1

2
〈Ψ(0),ΩΨ(0)〉 , (2.6)

while the functional

S[Ψ] = −1

2
〈Ψ, ΩΨ〉 (2.7)

is the Batalin-Vilkovisky master action [42 – 44, 13] associated with (2.6).

As in the beginning of the previous subsection, consider a not necessarily Lagrangian

or linear BRST gauge field theory described by a BRST differential s and let us also assume

that the set of fields ψA splits into fields ϕα, wa, and va such that wa and va are generalized

auxiliary fields. Let s̃ be the reduced BRST differential acting on the space of fields ϕα

according to s̃ϕα = sϕα|wa=0, va=V a[ϕ].

Suppose now in addition that the reduced system described by s̃ is Lagrangian which,

on the level of the master action, is expressed through the existence of an antibracket(
·, ·

)
red

on the space of local functions in ϕα, ∂·ϕα, . . . such that s̃ is generated by a mas-

ter action S̃[ϕ], i.e., s̃ =
(
S̃, ·

)
red

. Note that under appropriate regularity conditions,

this is in fact equivalent to the existence of a standard Lagrangian for the equations

sΨ(−1)
∣∣
Ψ(k)=0, k 6=0

= 0. Under these assumptions, one can show that the original the-

ory described by s can be also made Lagrangian by introducing “generalized” Lagrange

multipliers. Generalized Lagrange multipliers are related to ordinary Lagrange multipli-

ers in the same way as generalized auxiliary fields are related to ordinary ones: they are

Lagrange multiplies on the level of the master action, instead of the classical action.

In order to see this, let us introduce adapted coordinates ϕα, wa, va = swa as new

independent coordinates on the space of fields. Moreover one can always redefine ϕα such

that sϕα are functions only of ϕα and their derivatives (see [25] for a proof). In the new

coordinate system the differential s takes the form

s = sα[ϕ]
∂

∂ϕα
+ va ∂

∂wa
+ · · · , (2.8)

where dots denote the terms acting on derivatives.

The generalized Lagrange multipliers are then the new fields v∗a and w∗
a with |v∗a| =

|va| + 1, |w∗
a| = |wa| + 1 and gh(v∗a) = −gh(va) − 1, gh(w∗

a) = −gh(w∗
a) − 1. The extended

space is equipped with the following antibracket structure

(
ϕα, ϕβ

)
=

(
ϕα, ϕβ

)
red

,
(
va, v∗b

)
= δa

b ,
(
wa, w∗

b

)
= δa

b , (2.9)
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with all the other basic antibrackets vanishing. The bracket is extended in the standard

way (see e.g. [45]) to general local functions such that it satisfies the Leibnitz rule for the

second argument and commutes with the total derivative acting on the second argument.

The master action that describes the Lagrangian structure of the original theory is then

given by

S = S̃ −
∫

ddx vaw∗
a . (2.10)

It obviously satisfies the master equations 1
2

(
S, S

)
= 0. If f does not depend on v∗, w∗ and

their derivatives then (
S, f

)
= sf , (2.11)

where s is the original BRST differential.

Furthermore, fields v,w, v∗, w∗ are obviously generalized auxiliary fields in the sense

of [41]. Indeed, the equations of motion obtained by varying with respect to fields v and

w∗ can be algebraically solved for these variables. The reduced master action is S̃[ϕ] which

establishes the equivalence of the extended and the reduced theories as Lagrangian field

theories.

3. Scalar particle on AdS

3.1 (A)dS space as an embedding

We take the standard approach and describe gauge systems on constant curvature spaces

by embedding the latter in a flat pseudo-Euclidean space. More precisely, we consider the

surface X0 ⊂ R
d+1 described by

ηABXAXB + l2 = 0 , (3.1)

where XA, A = 0, . . . , d stand for the standard coordinates in R
d+1 while the metric is

chosen as ηAB = diag(−1, 1, . . . , 1,−1). When l2 > 0, the manifold X0 describes AdS

space, the case l2 < 0 corresponds to dS space. In what follows we explicitly consider the

case where X0 is AdS space, but the analysis remains the same for other constant curvature

spaces.

The main advantage of an embedding space over an intrinsic description is the trans-

parent form of the isometries. Similarly, in the higher spin gauge field context, the char-

acterization of the “vacuum symmetries”, i.e., of the gauge transformations that leave the

background solution invariant, is considerably simplified when one uses an embedding space

(see e.g. [29]).

3.2 BRST operator

To demonstrate the approach in the most simple case, we consider the quantum theory of

a massless scalar particle. At the classical level the phase space is just given by flat space

with coordinates XA, PA subjected to the standard Poisson bracket relations. The effective

phase space of a particle on X0 is described by the second class constraints

X2 + l2 = 0 , XP = 0 (3.2)

– 7 –
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together with the mass-shell constraint P 2 = 0. In order to have a description in terms

of first class constraints only, the geometrical constraint X2 + l2 = 0 is excluded from the

initial set of constraints and treated as a partial gauge fixing condition (see e.g. [46]). Note

that in terms of wave functions this reproduces the well known approach of [4]. As a result,

one has the following set of first class constraints

L = PAηABPB , M = PAXA , (3.3)

which form a closed algebra {L,M} = −2L.

In principle, one can construct the quantum theory by treating P,X as operators

represented on functions in X and build the associated gauge field theory, which then

describes a scalar field on X0. Indeed, in this representation the constraint XP completely

fixes the radial dependence of wave functions which then can be considered as fields on

X0. However, we now take a different route and first extend the constrained system even

further. What we want is an explicitly covariant formulation of the system, in terms of

bundles on X0 with fibers related to the embedding space. For this purpose, we generalize

the parent theory of [25] to the case of constant curvature spaces.

The extension amounts to introducing new variables Y A, momenta P̄B and postulating

the following Poisson bracket relations on the extended space:

{
P̄A,XB

}
= −δB

A ,
{
PA, Y B

}
= −δB

A . (3.4)

The original phase space can then be identified with the constrained surface determined

by the following second class constraints:

PA − P̄A = 0 , Y A = 0 . (3.5)

Indeed, computing the Dirac bracket and solving constraints one arrives at the original

phase space. Taking into account the original constraints L,M one finds that the equivalent

set of constraints is given by

PA − P̄A = 0 , Y A = 0 , (XA + Y A)PA = 0 , PAPA = 0 . (3.6)

One then observes that all constraints with Y A = 0 excluded are first class.

Passing to the quantum description one treats the variables P, P̄ ,X, Y as quantum

operators with the following commutation relations2

[P̄A,XB ] = −δB
A , [PA, Y B] = −δB

A , (3.7)

and introduces the Grassmann odd ghost variables ΘA, µ, c0 with gh(ΘA) = gh(µ) =

gh(c0) = 1 and their conjugate momenta:

[b0, c0] = −1 , [ρ, µ] = −1 , [PA, ΘB] = −δB
A . (3.8)

2For later convenience, we deviate from the standard convention, used for instance in [25], and choose

momentahere = ı momentastand. We will also use Ω
here = ıΩ

stand below.
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Finally, the nilpotent BRST operator that takes into account the first-class subset of (3.6)

reads as

Ω = ΘA(PA − P̄A) + c0P
2 + µ(XA + Y A)PA − 2c0µb0 . (3.9)

It can be worth mentioning that the easiest way to arrive at (3.9) is to start from the

BRST operator

Ωstand = ΘAP̄A + c0P
2 + µXAPA − 2c0µb0 , (3.10)

which decomposes into independent pieces: the BRST operator ΘAP̄A eliminating pure

gauge variables P̄ , Y,Θ,P and the standard BRST operator for constraints L,M . At this

stage, the commutation relations are standard: [Y A, P̄B ] = δA
B and [XA, PB ] = δA

B . The

BRST operator (3.9) with the commutation relations (3.7) are then obtained by performing

the change of variables X → X+Y and P̄A → PA−P̄A. The advantage of the more involved

arguments leading to (3.9) is that they can be naturally generalized to the case of a curved

phase space and to the case where the allowed functional spaces for X and Y variables

are different. In particular they remain valid if one allows for formal power series in Y

variables in observables and wave functions.

Before reducing to the surface by imposing the geometrical constraint X2 + l2 = 0, it is

convenient to recast the system in a more geometrical way. This is achieved by introducing

arbitrary coordinates XA through XA = XA(XB). An XB dependent rotation in the

fiber, Y ′ = ΛY , P ′ = PΛ−1 can then be completed to a canonical transformation if

P̄A = P̄ ′
A − W B

ACY ′CP ′
B . After dropping the primes, the transformed BRST operator

becomes

Ω = ΘA(EB
A PB − P̄A) + ΘAW C

ABY BPC + c0P
2 + µ(V A + Y A)PA − 2c0µb0 , (3.11)

where

W = −(dΛ)Λ−1 , V = ΛX , E = ΛdX . (3.12)

More generally, instead of Rd+1 one can consider a d + 1 flat pseudo-Riemannian

manifold X with coordinates XA and introduce V(X), the vector bundle associated with

the orthonormal frame bundle and isomorphic to T (X). Fiber coordinates on V(X) are

denoted by Y A and the flat fiber metric is η = diag(−1, 1, . . . , 1,−1). The fiber-wise

isomorphism (vielbein) between V(X) and TX is denoted by E. One further extends the

phase space to the cotangent bundle T ∗(V(X)), with variables P̄A, PA being coordinates

on the fibers. Finally, ghost variables ΘA,PA are introduced extending the phase space to

T ∗(V(X) ⊕ ΠTX), with Π denoting parity reversing.

At the quantum level the operators satisfy the commutation relations

[P̄A,XB] = −δ
B
A , [PA, Y B ] = −δB

A , [PA,ΘB] = −δB
A , (3.13)

originating from the canonical Poisson brackets on T ∗(V(X) ⊕ ΠTX). The BRST opera-

tor (3.11) is nilpotent and (at least locally) describes a particle on a submanifold X0 ⊂ X

transversal to the vector field V AE
B
A

∂

∂XB provided (i) the connection W on V(X) is flat and

– 9 –
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compatible with the fiber-wise metric and (ii) the vielbein is nondegenerate, covariantly

constant, and given by the covariant derivative of a fixed section V of V(X):

Wη + ηW T = 0 , dW + W 2 = 0 ,

dE + WE = 0 , E = dV + WV.
(3.14)

Let us stress that in this formulation, the BRST operator (3.11) is defined invariantly.

Indeed, by making use of the transformation properties of the components of W,V,E and

Y, P, P̄ ,Θ,P under changes of local coordinates on X and local frames of V(X), Ω is easily

seen to be invariant.

The extension just described is a very simple example of so-called Fedosov quantiza-

tion [30] extended to the case of constrained systems. More precisely, it corresponds to a

version of Fedosov quantization adapted to the case of cotangent bundles which was first

considered in [31]. The extension to the case of systems with constraints and the inter-

pretation in terms of BRST theory were developed in [32 – 34]. From this perspective a

natural generalization is to allow the connection W to be non-flat which can be appropriate

when considering curved phase space. In the case at hand taking W flat is the simplest

and natural option. Curvature will now be introduced by restricting to a submanifold.

3.3 Reduction to the surface

The essential feature of the extended system described by (3.9) is that the space-time

coordinates XA and their associated momenta are pure gauge degrees of freedom. It

should be noted, however, that the elimination of these degrees of freedom is in general

valid only locally and that geometrical data is lost in the process. Moreover, at the level

of associated field theories such an elimination leads to theories which are not equivalent

as local field theories, as it relates for instance theories that live in different space-time

dimensions. This is not so for the coordinate r transversal to the surface X2+ l2 = 0, which

is not considered as a proper space-time coordinate from the very beginning because by

construction the system effectively lives on this surface. In this sense r can be consistently

eliminated both at the first-quantized level and at the level of the associated field theory.

More technically, we first take a coordinate system XA = (xµ, r) adapted to the surface:

r =
√
−X2 and XA ∂

∂XA xµ = 0. In the new coordinate system, the BRST operator takes

the form:

Ω = θ(r)(EA
(r)PA − p̄(r)) + θµ(EA

µ PA − p̄µ) + θ(r)W A
(r) BY BPA+

+ θµW A
µ BY BPA + c0P

2 + µ(V APA + Y APA) − 2c0µb0 , (3.15)

with E,W,V defined as in (3.12), V 2 = −r2, and superscript (r) denoting the component

along ∂
∂r

of a tangent vector.

Suppose the system to be quantized in the coordinate representation for the variables

r, θ(r), p̄(r),P(r). In a neighborhood of r = l, the variables θ(r) and r − l form contractible

pairs, or in other words, condition r = l can be considered as a gauge fixing condition.

It follows that the system can be reduced by solving the linear second class constraints
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r = l, θ(r) = 0,P(r) = 0, p̄(r) = 0 in the BRST operators and putting θ(r) = 0 and r = l in

the wave functions. The reduced BRST operator is given by

Ω
T = θµ(eA

µ PA − p̄µ) + θµωA
µ BY BPA + c0P

2 + µ(V A + Y A)PA − 2c0µb0 , (3.16)

where now ωA
µ B = W A

µ B(x, l), eA
µ = EA

µ (x, l), V A = V A(x, l) and satisfy

dωB
A + ωB

Cω C
A = 0 , deA + ωA

BeB = 0 ,

dV A + ωA
BV B = eA, V AVA + l2 = 0 .

(3.17)

These define the compatible flat connection, the vielbein, and the fixed section of a vector

bundle V(X0) that can be identified with the bundle V(X) pulled back to the submanifold

X0 ⊂ X. That such a flat connection ωB
C , covariantly constant vielbein eA and “compen-

sator” V A are most useful to describe tensor fields on AdS has been originally understood

in [27, 28, 26, 18].

In terms of the associated field theory, the fields associated to all r, θr dependent

states are then generalized auxiliary fields in the sense of [25], provided one considers r

as an internal degree of freedom rather than a space-time coordinate. A more detailed

proof of this fact can be found in [47] in the nonlinear case.3 Note that, contrary to the

other reductions considered in this paper, the one given here merely serves to define and

motivate the parent theory on AdS and does not mean that the parent theory on AdS is

equivalent, as a local field theory, to the flat theory in one dimension more.

The representation space Γ(HT) for the quantum system is chosen to be the space of

“functions” in x, Y, c0, µ, θ which are formal power series in Y with coefficients in smooth

functions in x and polynomials in the ghosts. In terms of the representation space the

BRST operator acts as follows:

Ω
T = d−θµωA

µBY B ∂

∂Y A
−θµeA

µ

∂

∂Y A
+ c0

∂2

∂Y A∂YA
−µ(V A +Y A)

∂

∂Y A
−2µc0

∂

∂c0
, (3.18)

where d = θµ ∂
∂xµ can be considered as the De Rham differential provided one identifies θµ

and dxµ. With this choice, the quantum system described by the BRST operator (3.16)

is a parent system for a scalar particle on AdS. Indeed, we will now show that it can be

reduced both to the standard and the unfolded description of a particle on AdS.

To proceed with the reductions, we first note that the BRST operator (3.16) and

hence (3.18) also do not depend on the choice of local coordinates on X0 and local frames

of V(X0). A particulary useful choice is to take the orthonormal local frame such that

V A = lδA
(d) for which eA = lωA

(d) implying e(d) = 0. Here and in what follows Z(d) denotes

the d + 1-th component of a section Z, e.g. ZAZA = ZaZa + Z(d)Z(d) = ZaZa − Z(d)Z(d).

With this choice,

ωA
B =

(
ωa

b
1
l
ea

1
l
eb 0

)
,

3The parent formulation just described can be understood as a generalization of the unfolded formula-

tion [20, 21, 48] in which the auxiliary role of space-time coordinates has been understood in [22].
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and ea, a = 0, . . . , d − 1, is the standard AdS vielbein, with associated connection ωa
b:

ds2
AdS = ηab ea ⊗ eb, dea + ωa

be
b = 0,

Rab ≡ dωab + ωa
cω

cb = − 1

l2
eaeb ,

(3.19)

and the BRST operator becomes

Ω
T = θµ(ea

µPa − p̄µ) + θµωA
µ BY BPA + c0P

2 + µ(lP(d) + Y APA) − 2c0µb0. (3.20)

3.4 Reduction to standard description

It is straightforward to show that the system (ΩT,Γ(HT)) can be consistently reduced to

the standard description of a particle on AdS or, more precisely, to the system (Ω̃,Γ(E))

where Γ(E) is the space of x, c0 dependent functions and

Ω̃φ0 = c0¤AdSφ0, ¤AdSφ0 = ηµν(∂µ∂ν − Γρ
µν∂ρ)φ0 (3.21)

for φ0 ∈ Γ(E) and where Γρ
µν = eρ

aωa
µbe

b
ν + eρ

a∂µea
ν . Details can be found in appendix B.1.

3.5 Reduction to unfolded form

According to [25], the parent system can be reduced to its unfolded form by computing the

cohomology of the part of the BRST differential that does not involve space-time ghosts

θµ. One takes as degree minus the target space ghost number, i.e., minus the degree in

c0, µ, according to which the BRST operator decomposes as Ω = Ω−1 + Ω0, with

Ω−1 = c0¤ + µh − 2µc0
∂

∂c0
, Ω0 = d − ωA

BY B ∂

∂Y A
+ σ , (3.22)

where

h = −(Y A + V A)
∂

∂Y A
, ¤ =

∂

∂Y A

∂

∂YA
, σ = −θµeA

µ

∂

∂Y A
. (3.23)

For later convenience, let us set Y (d) = lz and ya = Y a. In appendix B.2, we will prove:

Proposition 3.1. The cohomology of Ω−1 in the spacce HT of formal power series in Y A

with coefficients in polynomials in c0, µ, θν is given by

H0(Ω−1,HT) ∼= E ⊂ ker Ω−1 , Hn(Ω−1,HT) = 0 n > 0 , (3.24)

where E = ker ¤∩ kerh. In the frame where V A = lδA
(d), E is canonically isomorphic to the

space Ē of traceless µ, c0, z-independent elements. The isomorphism K : Ē → E is given by

K−1φ = P(φ|z=0) for any φ ∈ E where P denotes the projector to the traceless component

(in the space of z-independent elements if φ = φ0 + (yaya)φ1 and ¤φ0 = 0 then Pφ = φ0).

As recalled in appendix A, the reduced BRST operators is Ω0 understood as acting

in Γ(E) because the cohomology of Ω−1 is concentrated in one degree. For φ ∈ Γ(E) one

then gets

Ω̃φ = (∇ + σ)φ , ∇ = d − ωA
BY B ∂

∂Y A
. (3.25)
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The associated equations of motion take the form (∇+σ)Ψ(0) = 0 where Ψ(0) contains the

fields associated with the θµ-independent states in E , i.e., Ψ(0) = Ψ(0)(x, Y ) and ¤Ψ(0) =

hΨ(0) = 0.

It is natural to rewrite the system in terms of Ē valued fields. More precisely, in the

frame where V A = lδA
(d) the operators h and Ω0 take the form

h = −Y a ∂

∂Y a
− (z + 1)

∂

∂z
, Ω0 = d − ωa

bY
b ∂

∂Y a
+ (z + 1)σ − 1

l2
eaya

∂

∂z
. (3.26)

For any φ0 ∈ Ē , element φ = Kφ0 reads as (see appendix B.2)

φ =
1

(1 + z)n

(
φ0 + (yaya)

n(n + 1)

2l2(d + 2n)
φ0 + · · ·

)
, (3.27)

where n = ya ∂
∂ya , the ratio is understood as a formal power series, and . . . denote terms of

the form (yaya)
kφ0, k > 2.

In terms of Ē-valued sections, the reduced BRST operator is given by Ω
unf = K−1

Ω̃K.

Using (3.26) and (3.27), one finds as explicit expression

Ω
unfφ0 =

[
d − ωa

by
b ∂

∂ya
+ σ

]
φ0 −

(n − 1)(n + d − 2)

l2(d + 2n − 2)
P[eayaφ0] , (3.28)

where φ0 ∈ Γ(Ē) and P denotes the projector to the subspace of traceless elements. This ex-

pression coincides with the differential determining the unfolded form of the Klein-Gordon

equation on AdS space proposed in [49].

4. Free higher spin gauge fields on AdS

4.1 The first-quantized model

Instead of the standard string inspired first-quantized description of higher spin gauge fields

in flat [14 – 16] and in AdS space in intrinsic coordinates [36, 37], we follow here the strategy

of the preceding section and construct a parent theory for higher spin gauge fields on

constant curvature spaces by using an embedding. Namely, we incorporate the constraints

describing the reduction to the surface into the flat first-quantized BRST system [14 – 16]

in the embedding space R
d+1.

With respect to the particle, the additional variables besides XA, PB are aA, a†B , where

A = 0, . . . , d. At the quantum level, these variables satisfy the commutation relations

[PB ,XA] = −δA
B , [aA, a†B ] = ηAB . (4.1)

The constraints of the system are

L ≡ ηABPAPB = 0, T ≡ ηABaAaB = 0,

S† ≡ −PAa†A = 0, S ≡ −PAaA = 0.
(4.2)
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For the ghost pairs (c0, b0), (c†, b), (c, b†), and ξ, π corresponding to each of these con-

straints, we take the canonical commutation relations in the form4

[b0, c0] = −1, [c, b†] = 1, [b, c†] = −1, [π, ξ] = −1 . (4.3)

The ghost-number assignments are

gh(c0) = gh(c) = gh(c†) = gh(ξ) = 1,

gh(b0) = gh(b) = gh(b†) = gh(π) = −1.
(4.4)

The BRST operator is then given by

Ω0 = c0L + c†S + S†c + ξT + c†cb0 + 2ξcb, (4.5)

while the representation space consists of functions in XA (on which PA acts as − ∂
∂XA )

with values in the “internal space” H0. The latter is the tensor product of the space Hc0,ξ

of functions in c0, ξ (coordinate representation for (c0, b0) and (ξ, π)) and the Fock space

for (a†A, aA), (c†, b), and (c, b†) defined by

aA|0〉 = b|0〉 = c|0〉 = 0. (4.6)

To reduce the system to AdS space, in addition to constraints (4.2), one needs to

impose the “geometrical” constraints

X2 + l2 = 0 , XAPA = 0 , XAaA = 0 , XAa†A = 0 , (4.7)

which are second class.

Again, after first passing to an equivalent set of second class constraints, we will keep

only half of them so that the remaining constraints together with (4.2) form a first class set,

the other constraints being considered as partial gauge fixing conditions. More precisely,

one first considers the constraints

XAPA + a†AaA = 0 , XAaA = 0 (4.8)

and checks that together with constraints (4.2), they form a closed algebra. Introducing

new pairs of ghost variables µ, ρ and ν, τ with

gh(µ) = gh(ν) = 1 , gh(ρ) = gh(τ) = −1 (4.9)

and commutation relations

[ρ, µ] = −1 , [τ , ν] = −1 , (4.10)

one can incorporate all the constraints into a standard BRST operator. The resulting

BRST system [35, 46] describes Fronsdal’s higher spin gauge fields on AdS.

In order to construct the parent theory we introduce, as in the previous section, new

variables Y A, momenta P̄A and ghost pairs ΘA,PA with commutation relations:

[P̄A,XB ] = −δB
A , [PA, Y B ] = −δB

A , [PA,ΘB] = −δB
A . (4.11)

4We use the “super” convention that (ab)† = (−1)|a||b|b†a†.
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The extended system is now described by the constraints

PA − P̄A = 0 , (4.12)

and all original constraints understood as functions of P and extended by Y -dependent

terms so as to commute with constraints (4.12). In fact only constraints XP + a†a = 0

and XA = 0 get corrected to XP + XY + a†a = 0 and Xa + Y a = 0 respectively. Finally,

one constructs the following nilpotent BRST operator:

Ω = θA(PA − P̄A) + c0P
2 − a†Pc − c†Pa + ξa2+

+ µ[(X + Y )P + a†a] + ν(X + Y )a + terms cubic in ghosts . (4.13)

4.2 Reduction to the surface and algebraic structure

Proceeding exactly in the way as in the case of the scalar particle, the BRST operator for

the system pulled back to X0 is

Ω
T = θµ(eB

µ PB − p̄µ) + θµωB
µ C(Y CPB − a†CaB)+

+ c0¤ + S†c + c†S + ξT + µh + νS̄† + terms cubic in ghosts , (4.14)

where the following notations have been introduced for constraints

S = −aP , S† = −a†P , T = a2 , ¤ = P 2 ,

S̄† = (Y + V )a , h = a†a + (Y + V )P ,
(4.15)

and eA, V A, ωB
A satisfy (3.17) and are considered components of the vielbein, the fixed

section, and the connection in V(X0). Note that variables a†A, aA are, along with Y -

variables, to be considered as coordinates on V(X0).

The constraint algebra that determines the form of the terms cubic in ghosts reads as:

[S, S†] = ¤ , [h, ¤] = 2¤ , [h, S†] = 2S† , [S, S̄†] = T , [S†, S̄†] = h ,

[h, T ] = −2T , [h, S̄†] = −2S̄† , [T , S†] = 2S , [¤, S̄†] = 2S ,
(4.16)

with all other commutators vanishing. It is not difficult to see that it is a subalgebra of

sp(4) identified in [25] as the algebraic structure underlying the parent theory of Fronsdal

higher spin gauge fields in the flat space. Note however that in the flat case the subalgebra

of sp(4) entering the BRST operator does not contain the generators S̄†, h and all the

sp(4) generators are represented on variables Y µ, a†µ associated with d-dimensional tangent

space. In the case at hand the variables Y A, a†A are associated with the d + 1 dimensional

embedding space.

Another important difference with the flat case is the shift Y → Y +V in the generators.

Moreover, it follows from dV A + ωA
BV B = eA that in terms of Y ′ = Y + V the expression

for the BRST operator takes the form

Ω
T = −θµp̄µ + θµωB

µ C(Y ′CPB − a†CaB)+
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+ c0¤ + S†c + c†S + ξT + µh + νS̄† + terms cubic in ghosts . (4.17)

Because the BRST operator is polynomial in Y the change of coordinates Y ′ = Y + V is

legitimate and gives, in particular, the easiest way to check nilpotency explicitly. Indeed,

in these terms, nilpotency immediately follows from the fact that W is a flat connection

compatible with the metric ηAB and all generators (4.15) are build from a†, a and Y ′, P

with the indexes contracted with ηAB. Note that in general one is not allowed to do such a

change of variables in the representation space where Y, P are represented on formal power

series in Y .

In order to obtain a representation of all of sp(4), one needs to add the following

generators:

T̄ = −1

4
(a†)2 , S̄ = (Y + V )a† , ¤̄ = (V + Y )2 , h′ = −a†a − d + 1

2
, (4.18)

which makes the total number of generators ten as it should be. Note that all the generators

are invariant under the choice of a basis in the d + 1 dimensional linear space provided

the components of Y, P, a†, a transform as (co)vectors and ηAB as components of a bilinear

form. In particular, sp(4) commutes with the standard action of o(d − 1, 2). Similarly to

the case of a scalar particle considered above it then follows that the BRST operator (4.14)

is invariant under the choice of the local frame of V(X0).

Taking as representation space Γ(HT), the space of “functions” in variables x, Y, a†,

c†, c0, b
†, ξ, µ, ν, θµ which are formal power series in the variables Y A, smooth functions

in x, and polynomials in a†A and ghost variables, the quantum system described by Ω
T

is the parent system for free higher spin gauge fields on AdS. The action of the BRST

operator (4.14) on a generic state of φ ∈ Γ(HT) takes the form

Ω
Tφ = (∇ + σ + Ω̄)φ , (4.19)

where

∇ = d − ωB
AY A ∂

∂Y B
− ωB

Aa†A
∂

∂a†B
, σ = −θµeA

µ

∂

∂Y A
, (4.20)

and

Ω̄ = c0¤ + c†S + S† ∂

∂b†
+ ξT + µ(h − 2) + νS̄† − c†

∂

∂b†
∂

∂c0
− 2ξ

∂

∂b†
∂

∂c†
−

− 2µc0
∂

∂c0
+ 2µb†

∂

∂b†
+ 2µξ

∂

∂ξ
+ 2νc0

∂

∂c†
+ 2µν

∂

∂ν
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
. (4.21)

The operators ¤, T, S, S̄†, S†, h are given by (4.15) with PA, aA replaced with − ∂
∂Y A and

∂
∂a†A respectively. By various consistent reductions of the parent system (ΩT,Γ(HT)),

one can reach the original and the unfolded descriptions as well as some “intermediate”

formulations which can be interesting in their own right.

4.3 Reduction to standard description

As a first step, a new intermediate reduction could turn out to be useful. It preserves

the simple algebraic structure of the parent theory and involves the d + 1 oscillators while

eliminating all the Y -variables but one.
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4.3.1 Tensor fields in embedding space

The reduction consists in the elimination of Y a, θµ. In this case, Γ(E) is the space of

functions in x with values in formal power series in Y (d) and polynomials in a†A, c0, c†,

b†, µ, ν. We again choose V A = lδA
(d) and set Y (d) = lz, a†(d) = lw. Let ∂a = eµ

a
∂

∂xµ ,

ωB
a C = eµ

aωB
µC and

Da = ∂a − ωB
aCa†C

∂

∂a†B
= ∂a − ωb

a ca
†c ∂

∂a†b
− w

∂

∂a†a
− a†a

l2
∂

∂w
, (4.22)

so that [Da,Db] = (ωc
ab − ωc

ba)Dc. We show in appendix C.1 that the reduced BRST

differential is given by

Ω̃ = c0¤̃ + S̃† ∂

∂b†
+ c†S̃ + ξT̃ + µh̃ + ν ˜̄S

†
− c†

∂

∂b†
∂

∂c0
− 2µc0

∂

∂c0
−

− 2µ
∂

∂b†
b† + 2µξ

∂

∂ξ
+ 2µν

∂

∂ν
− 2ξ

∂

∂b†
∂

∂c†
+ 2νc0

∂

∂c†
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
, (4.23)

where

¤̃ =

(
1

1 + z

)2

ηac(δb
cDa − ωb

a c)Db −
1

l2
∂

∂z

∂

∂z
− d

l2
1

1 + z

∂

∂z
, (4.24)

S̃† =
1

1 + z
a†aDa + w

∂

∂z
, (4.25)

S̃ =
1

1 + z

∂

∂a†a
Da −

1

l2
∂

∂w

∂

∂z
, (4.26)

h̃ = a†A
∂

∂a†A
− (1 + z)

∂

∂z
, (4.27)

˜̄S
†

= (1 + z)
∂

∂w
, (4.28)

T̃ =
∂

∂a†A

∂

∂a†A
, (4.29)

and the operators ¤̃, S̃, S̃†, T̃ , h̃, ˜̄S
†

satisfy the same subalgebra (4.16) of sp(4) as the

corresponding untiled operators.

One can reduce further by eliminating the dependence on ξ. This can be done consis-

tently by restricting the remaining states, respectively the string fields, to be annihilated

by T̃0 = ∂

∂a
†
A

∂
∂a†A − 2 ∂

∂b†
∂

∂c†
and dropping all terms in the BRST operator that involve ξ

or ∂
∂ξ

. Indeed, by choosing as a degree minus the homogeneity in ξ, the lowest part of

the BRST operator (4.23) is Ω̃−1 = ξT̃0. Its cohomology is concentrated in degree 0, the

ξ independent part, and described by states annihilated by T̃0. It then follows directly

from Proposition A.1 that the reduced BRST differential is given by Ω̃ξ=0=π restricted to

the subspace of ξ-independent and T̃0-traceless elements. Here, Ω̃ξ=0=π denotes the BRST

operator Ω̃ with all ξ, ∂
∂ξ

-dependent terms dropped.

Note that one can consider the BRST operator Ω̃ξ=0=π as an operator acting in the

subspace of ξ-independent elements that are not necessarily annihilated by T̃0. However,
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this operator is not strictly nilpotent anymore, nor does it commute with T̃0. More precisely,

it satisfies [T̃0, Ω̃ξ=0=π] = OT̃0, Ω̃
2
ξ=0=π = P T̃0 for some operators O,P , as it should for

Ω̃ξ=0=π to be well-defined and nilpotent on the T̃0-traceless subspace.

Contrary to the case of higher spin gauge fields in flat space, one can thus not directly

remove the trace constraint at the level of the parent theory or the intermediate reduction

by simply imposing it on the states and the string fields and dropping ξ, ∂
∂ξ

dependent

terms in the BRST operator. The reason is that the commutator [S, S̄†] = T of operators

S and S̄† entering the BRST operator produces T , and similarly for the tiled operators.

4.3.2 Tensor fields on AdS

We now consider the reduction to the standard BRST description in intrinsic coordinates,

i.e., with z,w, µ, ν eliminated. The system is described by the space Γ(E) of functions in

xµ taking values in polynomials in a†a, c0, c
†, b†, ξ. In this case, we show in the appendix

that the BRST operator reduces to

Ω̂ = c0¤̂ + c†Ŝ + Ŝ† ∂

∂b†
− c†

∂

∂b†
∂

∂c0
+ ξT̂ , (4.30)

where

¤̂ = ηac(δb
cDa − ωb

a c)Db +
1

l2
(
Na†a + 2c†

∂

∂ξ
a†a∇a+

+ (3 − d − Na†a − 2Nb† − 2Nξ)(Na†a − 2 + 2Nb† + 2Nξ)
)
,

Ŝ =
∂

∂a†a
Da +

1

l2
(
2c0

∂

∂c†
(2Na†a + d − 3 + 2Nb† + 2Nξ)

)
,

Ŝ† = a†aDa +
1

l2
a†aa†a(c

† ∂

∂ξ
+ 2c0

∂

∂c†
) ,

T̂ =
∂

∂a†a

∂

∂a†a
− 2

∂

∂b†
∂

∂c†
− 1

l2
2c0(1 − 2Nc†)

∂

∂ξ
,

(4.31)

with NZi = Zi ∂
∂Zi for any variables Zi and

Da = ∂a − ωb
a ca

†c ∂

∂a†b
, [Da,Db] = (ωc

ab − ωc
ba)Dc −

1

l2
(a†a

∂

∂a†b
− a†b

∂

∂a†a
) . (4.32)

Finally, one can reduce further by eliminating the dependence on ξ. Exactly the same

reasoning as for the analogous reduction in the previous subsection shows that this can be

done consistently by restricting the remaining states, respectively the string fields, to be

annihilated by T̂0 = ∂

∂a
†
a

∂
∂a†a − 2 ∂

∂b†
∂

∂c†
and dropping all terms in the BRST operator that

involve ξ or ∂
∂ξ

. We denote by Ω̂ξ=0=π the BRST operators Ω̂ with all the ξ, ∂
∂ξ

dependent

terms dropped.

As before, one can consider Ω̂ξ=0=π as an extension of the reduced BRST operator

from the subspace of ξ-independent and T̂0-traceless elements to that of ξ-independent,

but not necessarily T̂0-traceless ones. A more convenient extension, however, turns out

to be

Ωmod = Ω̂ξ=0=π +
c0

l2
(a†aa†a + 4c†b†)T̂0 , (4.33)
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because Ωmod is strictly nilpotent and commutes with T̂0.

Up to conventions and an overall sign, Ωmod coincides with the hermitian BRST op-

erator constructed in this context in [36] (see also [37]). By constraining the string field to

be annihilated by T̂0 and assuming the appropriate reality condition, the master action for

higher spin fields on AdS is given by (2.7), using either Ωmod or Ω̂ξ=0=π. More details on

master actions of this type can be found for instance in [40, 25, 50].

It then follows from Subsection 2.3 that all the formulations of higher spin gauge fields

on AdS described in this paper are Lagrangian by using suitable generalized auxiliary fields.

4.4 Reduction to unfolded form

The reduction to the unfolded form is performed by reducing to the cohomology of Ω̄ given

by (4.21). As in the flat case [25], we do this reduction in several steps.

4.4.1 Reducing to totally traceless fields

First we reduce the parent theory to a theory with totally traceless fields. This is achieved

by taking as a degree minus the homogeneity in c0, c
†, ξ and reducing to the cohomology

of the part of Ω̄ in lowest degree −1,

Ωtrace = c0¤ + c†S + ξT . (4.34)

The dimension of the space in which the trace is taken is d + 1, the dimension of the

embedding space. In d + 1> 3, the cohomology of Ωtrace in HT, the space of formal power

series in variables Y A with coefficients in polynomials in a†A and ghost variables, is given

by [25]:

H0(Ωtrace,HT) ∼= Ẽ = {φ ∈ HT :¤φ = Sφ = Tφ = 0, deg(φ) = 0} ,

Hn(Ωtrace,HT) = 0 n 6= 0 .
(4.35)

Since the cohomology is concentrated in one degree, one immediately arrives at:

Proposition 4.1. The parent system (ΩT,Γ(HT)) can be consistently reduced to the sys-

tem (Ω̃T,Γ(Ẽ)) with Ω̃
T = ∇ + σ + Ω̃ and

Ω̃ = S† ∂

∂b†
+ µ(h − 2) + νS̄† + 2µb†

∂

∂b†
+ 2µν

∂

∂ν
+ ν

∂

∂b†
∂

∂µ
. (4.36)

The associated field theory is described by the physical fields F,H,G,A taking values

in Y, a†-dependent traceless elements and entering the ghost number zero component of

the string field

Ψ̃(0) = F + µb†H + νb†G + b†θµAµ . (4.37)

In terms of component fields, the equations of motion Ω̃
TΨ̃(0) = 0 read as

DA = 0, DF + S†A = 0, DH + hA = 0, DG + S̄†A = 0,

(h − 2)F − S†H = 0, S̄†F + H − S†G = 0, (h + 2)G − S̄†H = 0 ,
(4.38)
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where D = ∇+ σ. The gauge symmetries are determined by δΨ̃(0) = Ω̃
TΨ̃(1) with compo-

nent fields in Ψ̃(1) to be replaced with gauge parameters.

The next step is to reduce to the cohomology of the BRST operator (4.36). This

operator corresponds to the standard Chevalley-Eilenberg differential associated with the

Lie algebra sl(2) in the given representation.

If V A were vanishing, the Lie algebra would act homogeneously in Y, a† and the repre-

sentation space would split into the direct sum of finite-dimensional irreducible represen-

tations. In this case, the cohomology is well known and given by the Lie algebra invariants

in ghost numbers −1, 1. In our case, however, the operators act inhomogeneously so that

infinite-dimensional representations have to be taken into account. In particular, there can

be nontrivial cohomology classes associated with elements which are not polynomial but

are formal power series in Y . It is again instructive to split the reduction to the cohomology

of Ω̃ into two steps.

4.4.2 First step: reduction to the intermediate system

Taking as a degree minus the homogeneity in ghost variables µ, ν, one arrives at the de-

composition Ω̃ = Ω̃−1 + Ω̃0, where

Ω̃−1 = µ(h − 2) + νS̄† + 2µb†
∂

∂b†
+ 2µν

∂

∂ν
, Ω̃0 = S† ∂

∂b†
+ ν

∂

∂b†
∂

∂µ
. (4.39)

In order to carry out the first step of the reduction, we need:

Proposition 4.2. The cohomology of Ω̃−1 in Ẽ is given by

H0(Ω̃−1, Ẽ) = Ê , Hn(Ω̃−1, Ẽ) = 0 n 6= 0, (4.40)

where Ê ⊂ Ẽ is the subspace of µ, ν-independent elements satisfying

(
h − 2 + 2b†

∂

∂b†

)
φ = 0 , S̄†φ = 0 . (4.41)

In degree zero, the statement is trivial. That the cohomology of Ω̃−1 vanishes in

nonzero degree is shown in appendix C.2. Because the cohomology of Ω̃−1 is concentrated

in one degree, the reduction is straightforward:

Proposition 4.3. The system (Ω̃T,Γ(Ẽ)) can be consistently reduced to the intermediate

system (Ω̂T,Γ(Ê)) where Ê is described by (4.41) and

Ω̂
T = ∇ + σ + S† ∂

∂b†
. (4.42)

Note that ∇ + σ commutes with S̄† and h − 2 + 2b† ∂
∂b†

. Similarly, S† ∂
∂b†

preserves Ê
and therefore projectors are not needed in (4.42).

The equations of motion of the associated free field theory have the form

(∇ + σ)Â = 0 , (∇ + σ)F̂ = −S†Â . (4.43)
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Here Â = θµÂµ(x;Y, a†) and F̂ (x;Y, a†) are respectively the 1-form and the 0-form physical

fields entering the string field associated with Ê :

Ψ̂(0) = F̂ + b†θµÂµ . (4.44)

The gauge transformations are given by

δÂ = (∇ + σ)λ̂ , δF̂ = −S†λ̂ , (4.45)

where the gauge parameter λ̂(x;Y, a†) replaces the fields at ghost number 1 and therefore

satisfies hλ̂ = S̄†λ̂ = 0.

This representation of higher spin gauge fields generalizes the so-called intermediate

form identified in [25] to the case of a constant curvature background.

4.4.3 Second step: reduction to the unfolded form

In the next step, we take as a degree the homogeneity in b† so that Ω̂−1 = S† ∂
∂b†

. To reduce

the system, we need to compute the cohomology of Ω̂−1 in the space Ê of completely trace-

less formal power series in Y with coefficients in polynomials in a†, b†, θµ satisfying (4.41).

In degree 1, the coboundary condition is trivial while the cocycle condition gives

S†φ = 0. This condition is homogeneous in variables Y, a† and implies that a homoge-

neous component of φ has more a† than Y variables. Together with the condition hφ = 0,

this implies that φ is polynomial in Y as well since otherwise the condition hφ = 0 can

be satisfied only by a formal power series in z, which contradicts S†φ = 0. Therefore

any solution can be decomposed into homogeneous solutions in a†A and Y A + V A. These

solutions are described by traceless rectangular Young tableaux.

In degree 0, the cocycle condition is trivial while the coboundary tells us that φ ∼
φ + S†A for a traceless A satisfying hA = S̄†A = 0. In fact in each equivalence class there

exists a unique representative satisfying V A ∂
∂a†A φ = 0. Because the statement does not

depend on the choice of local frame it is enough to show this in the frame where V A = lδA
(d).

As usually we use notations: lz = lz1 = Y (d), lw = lz2 = a†(d), and ya = Y a. We need the

following:

Proposition 4.4. For any zα independent φ0 ∈ Ẽ and an arbitrary number m, there exists

a unique solution φ ∈ Ẽ satisfying the equation:

(h − m)φ = 0 , S̄†φ = 0 , (4.46)

and the boundary condition P(φ|zα=0) = φ0, where P is the projector to the subspace of

totally traceless elements in the space of zα independent elements.

The proof is completely similar to that of Proposition C.2 given in appendix C.2. The

proposition determines a map Km that sends a traceless zα-independent element φ0 to a

traceless element φ satisfying (4.46) and P(φ|zα=0) = φ0.

Furthermore, if φ = K2φ0 one finds that P((S†φ)|zα=0) = S†
0φ0 where

S†
0 = a†b

∂

∂Y b
, h0 = a†b

∂

∂a†b
− yb ∂

∂yb
, S̄†

0 = yb ∂

∂a†b
, (4.47)
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form the standard representation of sl(2) in the space of z,w-independent elements. It

then follows that for any traceless z,w-independent φ0 there exists a unique element φ′
0

such that S̄†
0φ

′
0 = 0 and φ′

0 = φ0 + S†
0A0 for some traceless z,w-independent element

A0. Indeed, in each irreducible component any element can be uniquely represented as

a linear combination of the element annihilated by S̄†
0 (i.e., proportional to the lowest

weight vector) and the element in the image of S†
0. Using Proposition 4.4 one then finds

a unique A satisfying S̄†A = hA = 0 and P(A|zα=0) = A0 and finds that φ′ = φ + S†A

satisfies P(φ′|zα=0) = φ′
0. Finally, one observes that φ′ = Kmφ′

0 does not depend on w

for any m provided S̄†φ0 = 0. Using ∂
∂w

= 1
l2

V A ∂
∂a†A one then concludes that the unique

representative of a cohomology class in degree 0 can be assumed to satisfy

(h − 2)φ = 0 , S̄†φ = 0 , V A ∂

∂a†A
φ = 0 . (4.48)

The decomposition of Ê then reads:

Ê = E ⊕ F ⊕ G , E = E0 ⊕ E1 , (4.49)

where E1 is the subspace of elements of the form b†χ with χ satisfying hφ = S†φ = S̄†φ = 0,

E0 is determined by (4.48), G = ImS† ∂
∂b†

in Ê , and F is a complementary subspace.

We are now in the position to compute the reduced differential

Ω
unf =

EE

D −
EF

D ρ
GE

D , D = ∇ + σ , (4.50)

where ρ : Γ(G) → Γ(F) is the inverse to Ω̂−1. Note that because the cohomology is con-

centrated in degree 0 and 1, the higher order terms in (
GF

Ω )−1 = ρ + · · · cannot contribute

and therefore there is only one additional term besides
EE

Ω in (4.50).

Proposition 4.5. The system (Ω̂T,Γ(Ê)) can be consistently reduced to the unfolded system

(Ωunf ,Γ(E)) with

Ω
unf = ∇ + σ − b†σσ̄PR , σ̄ = θµeA

µ

∂

∂a†A
. (4.51)

Here PR denotes the projector from E0 to the space of traceless elements described by rectan-

gular Young tableaux defined as follows: if φ = φ0+φ1+ · · · where (a†A ∂
∂a†A −Y A ∂

∂Y A )φk =

−kφk then PRφ = φ0.

Note that PR is not a projector onto a subspace of E0. The proof of the proposition

is again relegated to appendix C.2. Note that the last term in Ω
unf automatically belongs

to E1 because it follows from V A ∂
∂a†A φ = 0 that V A ∂

∂a†A PRφ = 0 and therefore (S̄† −
V A ∂

∂a†A )PRφ = 0. At the same time (a†A ∂
∂a†A − Y A ∂

∂Y A )PRφ = 0. Because S̄† − V A ∂
∂a†A ,

h+V A ∂
∂Y A , and S† form a standard presentation of sl(2) on the space of a†A, Y A-dependent

elements, PRφ is sl(2) invariant and therefore S†PRφ = 0. Using S̄†PRφ = 0 one concludes

that hPRφ = 0 as well so that b†σσ̄PRφ ∈ E1.

The equations of motion determined by Ω
unf take the form Ω

unfΨunf(0) = 0 and ex-

plicitly read as

(∇ + σ)F = 0 , (∇ + σ)A + σσ̄PRF = 0 , (4.52)
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where the physical fields A,F enter the zero-ghost-number component of the string field:

Ψunf(0) = F (x;Y, a†) + b†θµAµ(x;Y, a†) . (4.53)

Under a gauge transformation, F is invariant while δA = (∇ + σ)λunf where λunf(x;Y, a)

is a gauge parameter with values in the subspace of elements annihilated by S†, S̄†, h.

Finally, we will rewrite the unfolded system in terms of zα-independent fields in order

to arrive at the formulation in terms of intrinsic coordinates. To this end we assume that

the local frame is chosen such that V A = lδA
(d) and as usually lw = a†(d), lz = Y (d), and

ya = Y a. It follows from Proposition 4.4 that any element of Ê is uniquely determined

by the traceless part of its zα-independent part. It is useful to describe subspaces E0 and

E1 in this way. For E1, equations hχ = S̄†χ = S†χ = 0 imply that χ0 = Pχ|zα=0 satisfy

S†
0χ0 = 0 from which it follows that E1 is isomorphic to the space Ē1 of zα-independent and

linear in b† traceless elements described by two row Young tableaux for which the number

of indexes contracted with a†b is bigger than that contracted with yb. The isomorphism is

just K0 considered as a map from Ē1 to E1.

For E0, equations (4.48) imply that φ0 = φ|zα=0 satisfy S̄†
0φ0 = 0 and therefore the

space E0 is isomorphic to the space Ē0 of b†, zα-independent traceless elements described

by two row Young tableaux for which the number of indexes contracted with yb is bigger

than that contracted with a†b. The isomorphism is just K2 considered as a map from Ē0

to E0.

This shows that the field content matches that of the unfolded form of higher spin

gauge fields in terms of intrinsic coordinates [26, 38]. It is instructive to write down the

structure of a representative φ of E0 satisfying (4.48) in terms of its zα-independent traceless

part φ0. One finds

φ = K2φ0 =
1

(1 + z)−h0+2

(
φ0 +

(n − s)(n − s + 1)

2l2(d + 2n − 4)
(yaya)φ0 + · · ·

)
(4.54)

where the ratio is understood as a formal power series and . . . denote terms proportional

to (yaya)
kφ0 with k > 2.

As for elements from E1, let χ0 be a traceless zα-independent element satisfying S†
0χ0 =

0. Then its representative in E1 has the form

χ = K0χ0 = (z + 1)h0+Nw
(
χ0 − wS̄†χ0 + · · ·+

+ (yaya)(. . .) + (yaa†a)(. . .) + (a†aa†a)(. . .)
)
, (4.55)

where Nw = w ∂
∂w

, . . . denote terms proportional to (wS̄†
0)

kχ0 with k > 2, and terms in

parenthesis denote some polynomials.

In addition we need the explicit expression for D = ∇+σ in the frame where V A = lδA
(d):

D = ∇0 + σ − 1

l2
eaya

∂

∂z
− 1

l2
eaa†a

∂

∂w
− eaz

∂

∂ya
− eaw

∂

∂a†a
, (4.56)

where ∇0 denotes the d-dimensional covariant derivative, i.e.,

∇0 = d − ωb
ay

a ∂

∂yb
− ωb

aa
†a ∂

∂a†b
. (4.57)
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Proposition 4.6. In terms of z,w independent elements, the unfolded system takes the

form

Ω
unf(φ0 + b†χ0) = DĒ0

φ0 − b†DĒ1
χ0 − b†σσ̄P

0
Rφ0 (4.58)

where φ0 ∈ Γ(Ē0), b†χ0 ∈ Γ(Ē1), and P0
R denotes the projector to the subspace of elements

in Ē0 described by rectangular Young tableaux. Furthermore, if n = ya ∂
∂ya and s = a†a ∂

∂a†a

DĒ0
φ0 = ∇0φ0 + σφ0 +

1

n − s + 2
S†

0σ̄φ0 +

+
(n − s + 1)(d + n + s − 4)

l2(d + 2n − 2)
P [eay

aφ0] , (4.59)

and

DĒ1
χ0 = ∇0χ0 + σχ0 − (d + s + n − 4)

l2(d + 2n − 4)
P

[
(s − n + 1)eayaχ0 − eaa†aS̄

†
0χ0

]
. (4.60)

Again, the proof is given in appendix C.2. Using (4.58), equations (4.52) take the form

DĒ0
F̄ = 0 , DĒ1

Ā + σσ̄P
0
RF̄ = 0 . (4.61)

where F̄ = P(F |zα=0), Ā = P(A|zα=0), and P0
R is the projector to the subspace of ele-

ments described by rectangular Young tableaux. The fields entering F̄ are gauge invariant

while for those in Ā one gets δλ̄Ā = DĒ1
λ̄ where the gauge parameter takes values in the

subspace of zα-independent traceless elements annihilated by S†
0. Up to conventions and

normalization factors, these equations indeed coincide with the unfolded form of higher

spin equations [38, 26] in AdS space.
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A. Reduction in homological terms and D-modules

Proposition A.1. Suppose H to be equipped with an additional grading besides the ghost

number,

H =
⊕

i >0

Hi, deg(Hi) = i, (A.1)
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and let the BRST operator Ω have the form

Ω = Ω−1 + Ω0 +
∑

i >1

Ωi, deg(Ωi) = i, (A.2)

with Ωi : Γ(H)j → Γ(H)i+j . If Ω−1 is a linear map of vector bundles (i.e. does not

contain x-derivatives) then H(Ω−1,Γ(H)) ∼= Γ(E) for some vector bundle E and the system

(Ω,Γ(H)) can be consistently reduced to (Ω̃,Γ(E)) where the operator Ω̃ is the differential

induced by Ω in the cohomology of Ω−1.

Note that without loss of generality one can assume that E is a subbundle in H.

Moreover one can always find a decomposition H = E⊕G⊕F where Ker Ω−1 = E⊕G, E ∼=
H(Ω−1,H), G = Im Ω−1, and F is a complementary subbundle. Then

GF

Ω is algebraically

invertible and Ω̃ is given by (2.3). Note also that if the cohomology of Ω−1 is concentrated

in one degree then Ω̃ = Ω0 considered as acting in Γ(E). Note that Proposition A.1 is

a slightly generalized version of the one in [25]. After choosing an adapted local frame,

its proof reduces to that in [25]. In that reference, one can also find an explicit recursive

construction for Ω̃.

Let us note that two systems (Ω,Γ(H)) and (Ω′,Γ(H′)) are obviously equivalent when

vector bundles H and H′ are isomorphic and the isomorphism maps Ω into Ω
′. At the

level of associated field theories the respective theories are related by a field redefinition

ψA → OA
B(x)ψB , where OA

B are the components of the isomorphism map with respect to the

local frames. This is a very restricted class of field redefinitions because it does not involve

x-derivatives of fields. A more general class of equivalence relations is provided by allowing

OA
B to be algebraically invertible. Note that this notion of equivalence is completely natural

from the quantum mechanical point of view because general similarity transformations in

x-representation are allowed to be invertible operators containing x-derivatives.

In fact there exists an adequate language which allows for a more invariant formulation

of first-quantized systems. This amounts to replacing the space of sections, which is a

module over functions on X, with the D-module over the algebra of differential operators

on X. We now shortly describe how to formulate the basic notions in terms of D-modules.

Let DX be the algebra of differential operators on X of (graded) finite order. Let also

D(H) be a right module over DX generated by the vector bundle H. Locally on X, D(H)

is a free DX-module generated by a local frame eA. A general element of D(H) can then

be represented as f = eAfA(x, ∂
∂x

) where eA is a local frame of H and fA(x, ∂
∂x

) are some

differential operators. The action of linear differential operators on H can be extended

to D(H) as follows: if G(eAφA) = eBGB
AφA for φ ∈ Γ(H) then for f ∈ D(H) one has

Gf = G(eAfA) = eAGA
B ◦ fB where f ◦φ denotes the composition of differential operators,

i.e., the associative product in the algebra of operators on X. Note that this left action is

compatible with the right module structure in the sense that it commutes with the right

multiplication by differential operators.

It is also natural to choose a local frame eA to be operator valued. For example, if eA is

a local frame of H and e′A = eBOB
A(x, ∂

∂x
), with OA

B some algebraically invertible differential

operator, then in the new frame the BRST operator Ω takes the form Ωe′A = e′B ◦ Ω
′B
A =
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e′B ◦ (O−1)BC ◦ Ω
C
D ◦ OD

A . If one associates fields ψA and ψ′A to eA and e′A, the associated

field theories determined by Ω and Ω
′ are related by a field redefinition ψA = OA

Bψ′B . In

particular, two systems (Ω,Γ(H)) and (Ω′,Γ(H′)) are isomorphic if D(H′) and D(H)) are

isomorphic as right DX-modules and the isomorphism maps Ω to Ω
′. We also note that,

because the action of Ω commutes with the right multiplication by a differential operators,

the kernel, image, cohomology etc. of Ω are again DX-modules, though not necessarily

generated by vector bundles.

The approach just discussed is a BRST extension of the standard D-module approach

to partial differential equations (for a review see e.g. [51]). Note, however, that in the

standard approach, left D modules are used which are in fact dual to the ones described

above.

B. Particle on AdS: details of reductions

B.1 Standard description

Let us assume that we are in the frame where V A = lδA
(d) and let z = lY (d) and ya = Y a.

Following subsection 4.2 of [25], we choose as grading Y A ∂
∂Y A + 2c0

∂
∂c0

, so that the BRST

operator (3.20) decomposes as Ω = Ω−1 + Ω0, where Ω−1 = −θµea
µ

∂
∂ya − µ ∂

∂z
, while

Ω0 = θµ(
∂

∂xµ
− ωA

µ BY B ∂

∂Y A
) + c0¤ − µY A ∂

∂Y A
+ 2c0η

∂

∂c0
,

where ¤ = ∂
∂Y A

∂
∂YA

. It follows that

HT = E ⊕ F ⊕ G

where E ∼= H(Ω−1,H
T). Introducing ρ = −yaeµ

a
∂

∂θµ −z ∂
∂µ

and N = Y A ∂
∂Y A +θµ ∂

∂θµ +µ ∂
∂µ

,

we choose F = ρHT, G = Ω−1H
T. It then follows from Proposition A.1 that the system

can be reduced to (Ω̃,Γ(E)). We still have to compute

Ω̃ =
EE

Ω −
EF

Ω (
GF

Ω )−1
GE

Ω , (B.1)

where in our case
EE

Ω = 0. For this purpose, we introduce the additional degree θµ ∂
∂θµ +µ ∂

∂µ
,

which we denote by a superscript and according to which Ω0 decomposes as Ω
0
0 = c0¤,

while Ω
1
0 = θµ( ∂

∂xµ − ωA
µ BY B ∂

∂Y A ) − µY A ∂
∂Y A + 2c0µ

∂
∂c0

. As in subsection 4.2 of [25], we

then get, for φE ∈ Γ(E),

Ω̃φE =
EF

Ω
0
0

∑

n=1

(−1)n
(

N−1ρΩ
1
0

)n

φE

=
EF

Ω
0
0

∑

n=1

1

n!

(
yaeµ

a

(
∂

∂xµ
− ωA

µBY B ∂

∂Y A

)
− z

(
Y A ∂

∂Y A
+ 2c0

∂

∂c0

))n

φE,

= c0¤
1

2

(
yaeµ

a

(
∂

∂xµ
− ωA

µ BY B ∂

∂Y A

)
− zY A ∂

∂Y A

)(
Y beν

b

∂φE

∂xν

)

= c0e
µa

(
δb
a

∂

∂xµ
− ωb

µ a

)(
eν
b

∂φE

∂xν

)

= c0¤AdSφ
E.

(B.2)
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As an additional remark let us note that an alternative way to arrive at the statement

is to take as a degree minus the homogeneity in µ and θν so that Ω−1 = ∇+σ+µ(h−c0
∂

∂c0
).

By expanding in Y A one finds that cohomology of Ω−1 can be identified with Γ(E), i.e.,

θµ, µ, Y A-independent sections. Using then a generalization of A.1 discussed in appendix A,

one can reduce the system to (Ω̃,Γ(E)). Because the cohomology is concentrated in ze-

roth degree, the reduced BRST operator Ω̃ is just Ω0 = c0¤ understood as acting in the

cohomology and coincides with (B.2).

B.2 Unfolded form

Because both Ω−1 and the chosen degree (minus homogeneity in µ and c0) does not depend

on the choice of frame, we are free to use the frame where V A = lδA
(d). The operator Ω−1

then has the form Ω−1 = c0¤ + µh − 2µc0
∂

∂c0
where

h = −ya ∂

∂ya
− (z + 1)

∂

∂z
, ¤ =

∂

∂ya

∂

∂ya
− 1

l2
∂

∂z

∂

∂z
. (B.3)

One first evaluates the cohomology of c0¤. Because any element is in the image of ¤, the

cohomology is given by c0-independent elements annihilated by ¤. By expanding in c0,

one concludes that the cohomology of Ω−1 is given by cohomology of µh in the space of

c0-independent elements annihilated by ¤. Using the homogeneity degree in z one then

concludes that the latter cohomology is determined by the cohomology of µ ∂
∂z

in ker ¤.

We will now show that this cohomology is given by µ, z-independent elements in ker ¤.

Indeed, this cohomology is isomorphic to the cohomology of c0¤ + µ ∂
∂z

in the space of all

µ, z, c0-dependent elements: by expanding in c0 one observes again that any cocycle can be

assumed c0-independent and thus belonging to ker ¤, while expanding in µ, one observes

that any cocycle can be assumed µ, z-independent. Finally, the cohomology of c0¤ in the

cohomology of µ ∂
∂z

is given by c0, z, µ-independent elements from ker ¤.

In degree 0, the cohomology is E = Ker h ∩ Ker ¤ and, by the above reasoning, this

space is isomorphic to the kernel of ¤ in the space of power series depending on ya = Y a

alone. We will now show how to uniquely lift such an element to a z-dependent element

that belongs to E . Any element in Ker h is uniquely determined by its z independent part:

if this part vanishes, the element vanishes and, furthermore, any element φ0 ∈ ker ¤ that

does not depend on z can be completed to a unique solution of hφ = 0 and ¤φ = 0. In

fact φ can be constructed order by order in z using the fact that any element in ker ¤ is in

the image of ∂
∂z

in ker ¤. This is just a reformulation of the fact that µ ∂
∂z

does not have

cohomology in non-vanishing degree in µ, z.

The explicit expansion of φ in terms of z and yaya has the following form:

φ =
1

(1 + z)n

(
φ0 + (yaya)

n(n + 1)

2l2(d + 2n)
φ0 + · · ·

)
, (B.4)

where n = ya ∂
∂ya , the ratio is understood as a formal power series, and . . . denote terms

of the form (yaya)
kφ0, k > 2. The coefficients in front of the terms (yaya)

kφ0 are uniquely

determined by the requirement ¤φ = 0.
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C. Higher spin gauge fields on AdS: details of reductions

C.1 Standard description

To get the intermediate reduction to tensor fields taking values in the embedding space, one

chooses as a grading ya ∂
∂ya +2c0

∂
∂c0

−b† ∂
∂b†

+c† ∂
∂c†

. The BRST operator (4.14) decomposes

as

Ω−1 = −θµ(1 + z)ea
µ

∂

∂ya
,

Ω0 = θµ ∂

∂xµ
− θµ(ωb

µ cy
c ∂

∂yb
+ ωB

µCa†C
∂

∂a†B
) + c0

∂

∂ya

∂

∂ya
+ a†a

∂

∂ya

∂

∂b†
+

+ c†
∂

∂a†a

∂

∂ya
+ ξT + µ(− ∂

∂z
− Y A ∂

∂Y A
+ a†A

∂

∂a†A
) + ν(

∂

∂w
+ z

∂

∂w
)−

− c†
∂

∂b†
∂

∂c0
− 2ξ

∂

∂b†
∂

∂c†
− 2µc0

∂

∂c0
− 2µ

∂

∂b†
b† + 2µξ

∂

∂ξ
+ 2µν

∂

∂ν
, (C.1)

Ω1 = −θµ
ea
µ

l2
ya

∂

∂z
+ w

∂

∂z

∂

∂b†
− c†

l2
∂

∂w

∂

∂z
+ νya ∂

∂a†a
+ 2νc0

∂

∂c†
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
,

Ω2 = − 1

l2
c0

∂

∂z

∂

∂z
.

In this case, ρ = − ya

1+z
eµ
a

∂
∂θµ and N = ya ∂

∂ya + θµ ∂
∂θµ , which determines the decomposition

HT = E ⊕G ⊕F with Γ(E) ∼= H(Ω−1,Γ(HT)) in the same way as in B.1. The additional

degree is θµ ∂
∂θµ , so that

Ω
0
0 = c0

∂

∂ya

∂

∂ya
+ a†a

∂

∂ya

∂

∂b†
+

+ c†
∂

∂a†a

∂

∂ya
+ ξT + µ(− ∂

∂z
− Y A ∂

∂Y A
+ a†A

∂

∂a†A
) + ν(

∂

∂w
+ z

∂

∂w
)−

− c†
∂

∂b†
∂

∂c0
− 2ξ

∂

∂b†
∂

∂c†
− 2µc0

∂

∂c0
− 2µ

∂

∂b†
b† + 2µξ

∂

∂ξ
+ 2µν

∂

∂ν
,

Ω
0
1 = w

∂

∂z

∂

∂b†
− c†

l2
∂

∂w

∂

∂z
+ νya ∂

∂a†a
+ 2νc0

∂

∂c†
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
,

Ω
0
2 = − 1

l2
c0

∂

∂z

∂

∂z
,

Ω
1
0 = θµ ∂

∂xµ
− θµ(ωb

µ cy
c ∂

∂yb
+ ωB

µCa†C
∂

∂a†B
) ,

Ω
1
1 = −θµ

ea
µ

l2
ya

∂

∂z
.

(C.2)

We now have

EE

Ω = − 1

l2
c0

∂

∂z

∂

∂z
+ w

∂

∂z

∂

∂b†
− c†

l2
∂

∂w

∂

∂z
+ ξT−

− µ(
∂

∂z
+ z

∂

∂z
− a†A

∂

∂a†A
) + ν(

∂

∂w
+ z

∂

∂w
) − c†

∂

∂b†
∂

∂c0
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
−

− 2µc0
∂

∂c0
− 2µ

∂

∂b†
b† + 2µξ

∂

∂ξ
+ 2µν

∂

∂ν
− 2ξ

∂

∂b†
∂

∂c†
+ 2νc0

∂

∂c†
, (C.3)
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while

−
EF

Ω (
GF

Ω )−1
GE

Ω φE =
EF

Ω
0
∑

n=1

(−1)n
(
N−1ρ(Ω1

0 + Ω
1
1)

)n
φE =

=
EF

Ω
0
∑

n=1

1

n!

( ya

1 + z

(
∂a − ωb

a cy
c ∂

∂yb
− ωB

aCa†C
∂

∂a†B
− ya

2l2
∂

∂z

))n

φE =

=
[ 1

1 + z
(a†aDa

∂

∂b†
+ c†

∂

∂a†a
Da)+

+ c0[
( 1

1 + z

)2
ηac(δb

cDa − ωb
a c)Db −

1

1 + z

d

l2
∂

∂z
]
]
φE , (C.4)

where ∂a = ea
µ

∂
∂xµ , ωB

a C = eµ
aωB

µ C and Da = ∂a−ωB
aCa†C ∂

∂a†B . The reduced BRST operator

is then given by (4.23).

To further reduce to tensor fields on AdS, we now choose as grading z ∂
∂z

+ 2c0
∂

∂c0
−

b† ∂
∂b†

+ c† ∂
∂c†

− ν ∂
∂ν

. The BRST operator (4.23) then decomposes as

Ω−1 = −µ
∂

∂z
+ ν

∂

∂w
,

Ω>0 = − 1

l2
c0

∂

∂z

∂

∂z
+ w

∂

∂z

∂

∂b†
− c†

l2
∂

∂w

∂

∂z
+ ξT − µ(z

∂

∂z
− a†A

∂

∂a†A
) + νz

∂

∂w
+

+
1

1 + z
(a†aDa

∂

∂b†
+ c†

∂

∂a†a
Da) + c0[

( 1

1 + z

)2
ηac(δb

cDa − ωb
a c)Db −

1

1 + z

d

l2
∂

∂z
]−

− c†
∂

∂b†
∂

∂c0
+ νc†

∂

∂ξ
+ ν

∂

∂b†
∂

∂µ
− 2µc0

∂

∂c0
− 2µ

∂

∂b†
b†+

+ 2µξ
∂

∂ξ
+ 2µν

∂

∂ν
− 2ξ

∂

∂b†
∂

∂c†
+ 2νc0

∂

∂c†
. (C.5)

In this case, ρ = −z ∂
∂µ

+ w ∂
∂ν

, N = z ∂
∂z

+ w ∂
∂w

+ µ ∂
∂µ

+ ν ∂
∂ν

. The additional degree is

µ ∂
∂µ

+ ν ∂
∂ν

so that

Ω
0
>0 = − 1

l2
c0

∂

∂z

∂

∂z
+ w

∂

∂z

∂

∂b†
− c†

l2
∂

∂w

∂

∂z
+ ξT +

1

1 + z
(a†aDa

∂

∂b†
+ c†

∂

∂a†a
Da)

+ c0[
( 1

1 + z

)2
ηac(δb

cDa − ωb
a c)Db −

1

1 + z

d

l2
∂

∂z
]−

− c†
∂

∂b†
∂

∂c0
+ ν

∂

∂b†
∂

∂µ
− 2ξ

∂

∂b†
∂

∂c†
,

Ω
1
>0 = Ω

1
0 = −µ(z

∂

∂z
− a†A

∂

∂a†A
) + νz

∂

∂w
+ +νc†

∂

∂ξ
− 2µc0

∂

∂c0

− 2µ
∂

∂b†
b† + 2µξ

∂

∂ξ
+ 2µν

∂

∂ν
+ 2νc0

∂

∂c†
. (C.6)

We now have

EE

Ω = ξ
∂

∂a†a
∂

∂a†a
+ (c†

∂

∂a†a
Da + a†aDa

∂

∂b†
)+

+ c0[η
ac(δb

cDa − ωb
a c)Db +

1

l2
a†a

∂

∂a†a
] − c†

∂

∂b†
∂

∂c0
− 2ξ

∂

∂b†
∂

∂c†
, (C.7)
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where

Da = ∂a − ωb
a ca

†c ∂

∂a†b
, [Da,Db] = (ωc

ab − ωc
ba)Dc −

1

l2
(a†a

∂

∂a†b
− a†b

∂

∂a†a
) , (C.8)

while

−
EF

Ω (
GF

Ω )−1
GE

Ω φE =
EF

Ω
0
∑

n=1

(−1)n
(
N−1ρΩ

1
>0

)n
φE =

=
EF

Ω
0
(
zL + wK +

1

2
(zL + wK)2 − 1

2
z2L + . . .

)
φE =

=
(c0

l2
(
L(1 − d − L) − 2Ka†aDa +

K2a†aa†a
l2

)
−

− c†

l2
(1

2
{L,K} + K(d + a†a

∂

∂a†a
)
)
− Ka†aa†a

l2
∂

∂b†
− ξ

l2
K2

)
φE ,

(C.9)

where . . . mean irrelevant terms of order at least 3 in w, z, while L = a†a ∂
∂a†a − 2c0

∂
∂c0

−
2 ∂

∂b†
b† + 2ξ ∂

∂ξ
and K = −c† ∂

∂ξ
− 2c0

∂
∂c†

. By noting that 1
2{K,L} = (L + 1)K, K2 =

2c0(1 − 2Nc†)
∂
∂ξ

and using (C.7) and (C.9) in the definition (2.3), we get the result (4.30)

of section 4.3.

C.2 Unfolded form

Proof of Proposition 4.2 To prove that Hn(Ω̃−1, Ẽ) = 0 for n 6= 0, let us suppose that

V A = lδA
(d) and introduce the following notations: z1 = z = Y (d)/l, z2 = w = a†(d)/l and

µ1 = µ, µ2 = ν.

By expanding in the homogeneity in Y and a†, one finds that the cohomology of Ω̃−1

is controlled by the cohomology of δ = µα ∂
∂zα . As a preliminary result, we need to show

that the cohomology of δ, which is trivial in the space of formal power series in Y with

coefficients that are polynomials in a†A, µα and the other ghost variables, is also trivial in

the space of traceless elements:

Lemma C.1. The cohomology of δ in Ẽ, the space of completely traceless elements, is

given by µα, zα-independent traceless elements.

Proof. The cohomology of δ in Ẽ can be represented as that of Ωtrace + δ in the space HT

where Ωtrace is given by (4.34). Indeed, taking as a degree minus the homogeneity in ghosts

c0, c
†, ξ and using the fact that the cohomology of Ωtrace is concentrated in zeroth degree

one concludes that the cohomology of Ωtrace + δ is given by cohomology of δ in Ẽ .

On the other hand, taking as a degree minus the homogeneity in µα one finds that

deg δ = −1, deg Ωtrace = 0. The cohomology of δ is concentrated in zeroth degree and is

given by zα, µα-independent elements. The cohomology of the entire operator is then given

by that of Ωtrace reduced to the subspace of zα, µα-independent elements. The reduced

differential is given by

Ω
0
trace = c0¤0 + c†T0 + ξS0 ,

¤0 =
∂2

∂ya∂ya
, T0 =

∂2

∂a†a∂a†a
, S0 =

∂2

∂ya∂a†a
.

(C.10)

– 30 –



J
H
E
P
0
8
(
2
0
0
6
)
0
1
3

According to the results of [25], the cohomology of Ω
0
trace is given by c0, c

†, ξ-independent

traceless elements provided d> 3.

Analogous arguments show that the cohomology of δ1 = µ1 ∂
∂z1 (respectively δ2 =

µ2 ∂
∂z2 ) in the space of traceless elements is given by µ1, z1- (respectively µ2, z2) independent

traceless elements. Let Ẽ0 ⊂ Ẽ be the subspace of µα, zα-independent elements. One then

has the following:

Proposition C.2. For any φ ∈ Ẽ0 satisfying S̄†φ = 0 and an arbitrary number m, there

exists a unique zα-dependent and µα-independent A ∈ Ẽ such that

φ = (h − m)A , S̄†A = 0 , P(A|zα=0) = 0 , (C.11)

where P is the projector to the subspace of totally traceless elements in the space of zα

independent elements.

Proof. Multiplying equations (C.11) respectively by µ1 and µ2, one gets

δA = ∆A − µ1φ , ∆ = µ1(h − m +
∂

∂z1
) − µ2(S̄† − ∂

∂z2
) , δ = µα ∂

∂zα
. (C.12)

Note that ∆ is homogeneous of degree 0 in the total degree that counts Y ’s and a†’s. By

expanding according to this total degree, one gets the equations

δAn+1 = ∆An − µ1φn , (C.13)

which has a unique µα-independent solution satisfying the condition P(An|zα=0) = 0 for all

n. This follows from the fact that the cohomology of δ is given by zα and µα independent

elements while the consistency holds due to the following identities

[δ, ∆] = −2µ1δ ,
1

2
[∆,∆] = −2µ1∆ , (C.14)

and S̄†φ = 0. In order to see that the solution is unique one notes that the arbitrariness

in An+1 is given by zα-independent terms which are traceless. By requiring the traceless

part of A|zα=0 to vanish one thus fixes the ambiguity. Note that in general A is a formal

power series in z1 even if φ is polynomial in all the variables.

Similar arguments show that any element from Ẽ0 is in the image of S̄†. One then has

all the ingredients needed in the proof of Proposition 4.2.

Proof of Proposition 4.5 First, one observes that the second term in (4.50) vanishes

when acting on a E1-valued section and therefore one gets

Ω
unfχ = (∇ + σ)χ , χ ∈ Γ(E1) . (C.15)

Note that the projection here is not needed because D = ∇ + σ preserves Γ(E1).

To compute Ω
unfφ for φ ∈ Γ(E0) it is convenient to choose the frame where V A = lδA

(d).

One is allowed to use a special frame because the statement is frame-independent. As
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usually we also use lz = lz1 = Y (d), lw = lz2 = a†(d). For a E0-valued section again
EE

Dφ = Dφ but the second term in (4.50) can be non-vanishing. To compute it explicitly,

one first observes that it can be non-vanishing only on elements whose traceless part at

zα = 0 is annihilated by h0, i.e., is described by a rectangular Young tableaux. This follows

from counting homogeneity degree in ya, a†a. Let φ ∈ Γ(E0) be such that the traceless part

φ0 of φ|zα=0 satisfies hφ0 = h0φ0 = 0. One then observes that

PGDφ = −S†K0(σ̄φ0) , σ̄ = −θµeA
µ

∂

∂a†A
, (C.16)

where X = K0(σ̄φ0) is a unique solution X ∈ Γ(Ê) to the equation hX = S̄†X = 0

satisfying P(X |zα=0) = σ̄φ0 (see Proposition 4.4). Indeed, to see this it is enough to show

that Dφ + S†X ∈ Γ(E0) which is in turn equivalent to ∂
∂w

(Dφ + S†X) = 0. One then

uses ∂
∂w

X = ∂
∂w

φ = 0, [ ∂
∂w

, D] = σ̄, [ ∂
∂w

, S†] = ∂
∂z

and finds that both ∂
∂z

X and −σ̄φ are

annihilated by h − 1 and S̄† and satisfy the same boundary condition at z = 0. It then

follows from the Proposition 4.4 that they do coincide.

By counting degree in yb and a†b one finds that PE1b
†K0(σ̄φ0) = 0 because b†σ̄φ0 does

not belong to Ē1. Thus

ρ
GE0

D φ = −b†K0(σ̄φ0) . (C.17)

Again, by counting the degree one finds that the only contribution to E1 from −Db†K0(σ̄φ0)

comes from the terms in D that lower the degree in ya. These terms give (z + 1)σ and one

finds that

PE1b
†DK0(σ̄φ0) = K0(b

†σσ̄φ0) = b†σσ̄φ0 (C.18)

where we have used [h, (z + 1)σ] = 0, [S̄†, (z + 1)σ] = −(z + 1)σ̄, and σ̄K(σ̄φ0) = 0. The

last equality follows from the fact that h0σσ̄φ0 = S̄†
0σσ̄φ0 = S†

0σσ̄φ0 = 0 and therefore

K0σσ̄φ0 = σσ̄φ0.

There remains to show that for arbitrary φ ∈ Γ(E0) one has PRφ = P0
Rφ0 where P0

R

denotes the standard projector onto the subspace of elements in Ē0 described by rectangular

Young tableaux. Indeed, it follows from S̄†
0φ0 = 0 and the explicit structure (4.54) of

φ = K2φ0 that all monomials in φ − φ0 contain more Y A variables than a†A ones. This

allows to rewrite the contribution (C.18) in frame-independent terms

b†σσ̄P
0
Rφ0 = b†σσ̄PRφ , (C.19)

where φ0 = P(φ|zα=0) and φ ∈ E0.

Proof of Proposition 4.6 First one observes that DĒ0
φ0 = PĒ0

P[(Dφ)|zα=0] where

φ ∈ Γ(E0) satisfies P[φ|zα=0] = φ0. To compute DĒ0
φ0 explicitly one then observes that

the first two terms in (4.56) obviously commute with putting zα to zero as well as with the

projection to the subspace of elements annihilated by S̄†
0. From the rest of the terms the

third and the fourth ones give some additional contributions.

In order to find PĒ0
P[(σφ)|zα=0] one notices that it follows from (h− 2)φ = 0 that the

expansion of φ in z has the form

φ =
1

(z + 1)n−s+2
φ|z=0 , (C.20)
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where n = ya ∂
∂ya and s = a†a ∂

∂a†a are the operators counting the degree of homogeneity in

ya and a†a. On the other hand, taking a ¤-traceless part of ¤φ = 0 at z = 0 and using

¤z = − 1
l2

∂
∂z

∂
∂z

, one finds

φ|z=0 = φ0 +
(n − s)(n − s + 1)

2l2(d + 2n − 4)
(yaya)φ0 + · · · (C.21)

where . . . denote terms proportional to higher powers in yaya. Computing the projector

explicitly one then finds

PĒ0
(σφ|zα=0) = σφ0 +

1

n − s + 1
S†

0σ̄φ0 −

− (n − s + 1)(n − s + 2)

l2(d + 2n − 2)
P [(eaya)φ0] . (C.22)

It follows from the expansions (C.20) and (C.21) that

P[(
∂

∂z
φ)zα=0] = −(n − s + 2)φ0 , (C.23)

which in turn implies

PĒ0
P

[
(− 1

l2
eaya

∂

∂z
φ)|zα=0

]
=

n − s + 1

l2
P [eayaφ0] . (C.24)

Note that here the projection PĒ0
is omitted because S̄†

0 commutes with eaya so that the

result belongs to Ē0 automatically. Summing up all contribution one arrives at (4.59).

For DĒ1
one finds DĒ1

χ0 = PĒ1
P[(Dχ)|zα=0] where χ is uniquely determined by b†χ ∈

Γ(E1) and P[χ|zα=0] = χ0. In this case one observes that only the first five terms in (4.56)

do contribute to PĒ1
P[(Dχ)|zα=0]. Finding the explicit expression is a bit more difficult in

this case. The relevant terms in the expansion of χ in terms of z,w and traces read as:

χ = χ0 + z(s − n)χ0 − wS̄†
0χ0+

+
1

2
(s − n)(s − n + 1)zzχ0 − (s − n + 1)zwS̄†

0χ0 +
1

2
wwS̄†

0S̄
†
0χ0 + · · ·+

+ α(yaya)χ0 + β(yaa†a)S̄
†
0χ0 + γ(a†aa†a)S̄

†
0S̄

†
0χ0 + · · · (C.25)

where α, β, γ are coefficients depending on n, s. It is useful to assume for the moment that

χ0 is homogeneous so that nχ0 = n̄ and sχ0 = s̄. The tracelessness condition then implies:

− 1

l2
(s̄ − n̄)(s̄ − n̄ − 1) + 2α(d + 2n̄) + 2β(s̄ − n̄) = 0 ,

1

l2
(s̄ − n̄ − 1) + 2α + β(d + n̄ + s̄) + 4γ(s̄ − n̄ − 1) = 0 ,

− 1

l2
+ 2β + 2γ(d + 2s̄ − 4) = 0 .

(C.26)

which determines the coefficients to be

α =
(s̄ − n̄)(s̄ − n̄ − 1)

2l2(d + 2n̄ − 2)
, β = − s̄ − n̄ − 1

l2(d + 2n̄ − 2)
, γ =

1

2l2(d + 2n̄ − 2)
. (C.27)
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Now one can explicitly compute all contributions:

PĒ1
P [(σχ)|zα=0] = σχ0 − 2αPĒ1

P[eayaχ0] − βPĒ1
P[eaa†aS̄

†
0χ0] =

= (−2α + β)PĒ1
P[eayaχ0] =

= − (s − n)

l2(d + 2n − 4)
P[(s − n + 1)eayaχ0 − eaa†aS̄

†
0χ0] , (C.28)

where we have re-expressed the coefficients in terms of n, s. Note that the projection to the

subspace of elements annihilated by S†
0 is automatic in the last expression. Furthermore,

PĒ1
P

[
− 1

l2
eaya(

∂

∂z
χ)|zα=0

]
= −s − n + 1

l2
PĒ1

P [eayaχ0] (C.29)

and

PĒ1
P

[
− 1

l2
eaa†a(

∂

∂w
χ)|zα=0

]
=

1

l2
PĒ1

P

[
eaa†aS̄

†
0χ0

]
. (C.30)

Summing up all contribution one arrives at (4.60).

Finally, the structure of the last term in (4.58) is obvious if one observes that, for φ0 ∈
Γ(Ē0) and φ = K2φ0, the projectors coincide: P0

Rφ0 = PRφ and K0σσ̄P0
Rφ0 = σσ̄P0

Rφ0.
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